
attenuation factor; Fsp , specific surface of disperse material, Fsp=3/(~P~ ; ~, mass concen- 
tration of particles in the stream, ~=G~(~F~) ; Co, coefficient of release of radiation by 
an absolute blackbody, co = 5.67 W/(m=.~ N, number of particles in the stream; Ap, absor- 
ptivity of the disperse stream; ~2,1, exposure factor, ~2.z=F1/(=h~) ; Q, amount of thermal en- 
ergy; e, degree of blackness of the system; Erd , reduced degree of blackness of the system; 
9, generalized temperature. Subscripts: m, gaseous medium; p, polymer; sur, particle sur- 
face; c, center of particle; fu, fusion; abl, ablation; sou, source; absn, absorption; fli, 
flight; ons.fu, onset of fusion; c.fu, complete fusion. 
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PROPAGATION OF SOUND PERTURBATIONS IN HETEROGENEOUS GAS--LIQUID SYSTEMS 

I. Sh. Akhatov and V. A. Baikov UDC 532.59:534.22 

It is shown that the spatial heterogeneity of the gas content and the disperson 
of sound in a bubble-containing medium may lead to deviation, focusing, and de- 
focusing ofsound beams. 

Analysis of the processes that occur during the passage of pressure waves through a gas- 
liquid mixture having a bubble structure is required for solving problems of energetics and 
pipeline transportation. Wave propagation in gas--liquid media was investigated in [i, 2] in 
the approximation of plane one-dimensional motion. However, experimental data on gas--liquid 
flows in pipes suggest that the parameters of the mixture (for example, the spatial gas con- 
tent [3, 4]) are not homogeneous over a cross section of the pipe. The present work is de- 
voted to revealing the features of the propagation of the sound perturbations in heterogeneous 
gas--liquid media. 

The equations of continuity and impulse for a single-velocity gas--liquid mixture are of 
the form 

.Op + div (pv) : O, p = p~=~ + pO~, =~ + == = 1, 
Ot 

(i) 
0v 

P r ~ -  -t- P (vv)  v = - -  VP, P : =zPz + r 
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Fig. i .  Beam trajectory for the linear (a) and parabolic (b) 
gas content distributions along the ~ axis. 

We assume that the liquid phase is incompressible (po, = const). This assumption holds 
true for reasonably large values of the gas content (a= >> u~= = p/pO c=,, cI is the velocity 
of sound in a pure liquid). Let us consider a locally monodispersive medium, elementary vol- 
umes of which contain spherically shaped bubbles of equal radii. We take the Rayleigh--Lamb 
equation [5], describing the radial motion of the wall of a single bubble in a viscous incom- 
pressible liquid, as the equation of the state of the mixture. 

dR 
R d 2 R  _jr_ 3 ( dR~ 2 p 2 - - 4 # h ' - ~ -  - -  pl  

dt 2. T \ 'd"~) = pO (2) 

We take the equation of state of the gas inside the bubble in the form 

(p:Y c3) P~=Po \ p%] �9 

For smal l  s p a t i a l  concen t ra t i ons  o f  the gas (a*2 << a2 << 1 ) ,  the e n t i r e  m ix tu re  can be 
considered as a cont inuous medium w i t h  d e n s i t y  approx imate ly  equal to the reduced d e n s i t y  o f  
the liquid (p = p~ pressure equal to the true pressure in the liquid phase (p = p~), and 
compressibility equal to that of the gas. 

Let us assume that the perturbations of pressure (p' = p -- Po), density (0' = 0 -- Po), 
velocity of the mixture, as well as oscillations of a bubble (R' = R-- Ro) are small. From 
now on, the subscript 0 will designate the parameters of an unperturbated flow. 

Assuming that bubbles are neither destroyed nor produced in the mixture, it can readily 
be shown that the perturbations 0' and R' are related by 

3=1~176176 R ~. (4) 
Ro 

E q u a t i o n s  ( 1 ) - ( 3 )  a f t e r  : l i n e a r i z a t i o n  and t a k i n g  a c c o u n t  o f  (4) can  be r e p r o d u c e d  to  a 
single equation for p': 

a~p, '~ a ~ a ~. a ~ 
a~p__~ ' =~ c~ p,+= ap' +1~ A= -+ + 

at ~. at at2 ]' axe- ~ az~- ' (5) 

Oqo~opO , ~ = 3oqo~opo , I~= ~ ,  3~1o~o 

where c is the equilibrium (low-frequency) velocity of sound in the bubble medium. If the 
spatial gas content ~=o is heterogous in space, then the coefficients c, ~ and B, in (5) de- 
pend on the spatial coordinates. It is easy to show that for sufficiently long perturbations 
X >> max(~,/~2oc0~ Ro/a/~2o) the terms ~Sp'/~t and ~820'/~t = are small in comparison with 
c20'. Therefore, a and B can be considered as constants that correspond to a certain mean 
value ~~ and c varies spatially according to the spatial gas content. 
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Fig. 2. Dependence of the foca l  distance ~fmin and aberra" 
tion Aqf on the parameter of heterogeneity of the mediumb 
(a) and parameter of dispersion ~x (b). 

Let us assume that the gas content at distances of the order of a wavelength changes 
only slightly. In this case the approximation of geometrical optics [6] can be used for 
solving (5). Then for a harmonic wave of the form p' = (u(r)/ci(r))exp(--i~t) and (5) we will 
obtain Helmholtz's equation 

Au Jr (k~ (r) J r  i8 (r)) u = 0, 

- d ( ) k.= ,o 
k~ (r) = k~ ~ 1 -F [3, - -~ - ] ,  co 

2~ 

= "  ~,o ' (6) 

where co = c(a~ is a typical value of the velocity of sound, and BI is a dimensionless 
parameter characterizing the dispersive properties of the medium. 

Representing the solution in the form u(r) = A(r)exp(iko~(r)), we obtain the eikonal e- 
quation for the eikonal ~(r) and the transfer equation for the amplitude A(r) 

k~ (r) 
(V~)~ = n~ (r), n ~ (r) = ~ (7)  

kg ' 

A ~  + 2V~.VA + a~ (r) A 0, 8~ (r) 8 (r) (8) 
ko 

Here n is the refractive index of the medium which, for the case in question, depends not only 
on the spatial coordinates but also on the wavelength. From (8) it follows that the intensity 
of absorption of the energy of a sound wave is equal to 6xA 2 per unit volume. Estimates show 
that the absorption is negligible for the gas--liquid systems considered inthe present work. 

Let us consider the propagation of sound perturbations in a channel filled with a gas-- 
liquid medium in which the gas content depends on the z-coordinate only. From (7) it follows 
that in this case, the equation for the ray trajectors (i.e., for the line perpendicular to 
the surfaces ~(r) = const) emanating from the point with coordinates z = zo, x = 0 at an an- 
gle ~/2 to the z axis is of the form 

n (Zo) dz (9)  
x = V n ~  ( z ) -  n2 (zo) " 

ZO 

For a linear distribution of the gas content along the z axis (0 ~ z ~ a) ai,(z) = a*2o 

a , which can hold, for example, as the gas--liquid mixture becomes stratified in the 

gravitational field, the equation for the trajectories of rays (9) can be written as 

-F [ ,  = (~ -F ~,) eh (X~l), [ = z/a, ~ = x/a,  

~, ~ + 21~, V ~ d  
--  2~1d ' ~ = ~ ,  ~ o =  zda ,  
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Evidently, the trajectories of the rays depend only on the two dimensionless constants d and 
8z which characterize the heterogeneity and dispersion of the medium, respectively. In Fig. 
la, the calculated trajectories of rays emanating from the points ~o = O, 0.25, 0.5 and 0.75 
are shown for d = 0.2 and the two different values of the parameter 8, (8, = 2.77 for the so- 
lid lines, 8, = 0.11 for the dashed curves). These values of 8, correspond, for example, to 
the propagation of waves of different wavelengths Zo = I0 -= m (8~ = 2.77) and ~o = 5"10 -= m 
(8, = 0.11) in the gas-liquid mixture in which =~ = 0.05, Ro = i0 -s m. As is seen from Fig. 
i, the trajectories of rays are bent in the direction of increasing spatial gas content, the 
curvature being increased with increasing dispersion parameter 8,. The calculations also 
showed an increasing curvature of the rays with increasing parameter of heterogeneity d. 

For a parabolic distribution of the gas content along the z axis (Izl < a) ~=o(z) = ~~ 

( ()) 1 + b 1-- a 2 , which can take place, for example, near the wall as the gas--liquid mix- 

ture flows along the pipe [3, 4], the equation for the trajectory of the rays (9) is of the 
form 

arcsin 

~ I = B  F 2 ' 2 ; 1; - -  c l t  , 

v" g o . 1 - -  sin ~- t 

B = , 

n ' (g) = l + h + o (1 + 2 h ) ( 1  - -  g') + (1 - -  

where F(a, b; c; z) is Gauss's hypergeometric function. 

In Fig. ib, the trajectories of the rays emanating from the points ~o = 0.25, 0.5, 0.75 
and 1 are shown when the parameter of heterogeneity of the medium b = 2 and the parameter of 
dispersion 8z = 0.2. Figure lb demonstrates the presence of aberration. The rays, depending 
on the initial coordinate go intersect the x axis at different points qf(~o) 

The beam IEo[ ~ i is focused on the segment [qfmin, qfmax]. The dashed curve i shows the en- 
velope of the family of trajectories of the rays. There is a region of "shadow" where the 
sound perturbations do not penetrate; this region is bounded by the envelope and a ray emanat- 
ing from the point ~o = --i (dashed curve 2). 

In Fig. 2a the calculated dependences for nf min and A~f = ~fmax _ nfmin on the parameter 
of heterogeneity of the medium b at 8, = 0.2 are shown. As is seen from Fig. 2, the value of 
the parameter b considerably influences the focal distance qf and the value of the aberration 
Anf. As b diminishes to zero, nf asympotically approaches infinity, and A~f approaches zero, 
since the case b = 0 corresponds to a homogeneous medium. 

Figure 2b shows the calculated dependencies for nf min and A~f on the parameter of dis- 
persion 8, at b = 0.2. It can be seen that 8, affects the value of the focal distance only 
slightly and does not practically affect the value of the aberration. As 8, diminishes to 
zero, nf min and Anf approach their limiting values 

- 2 y r b - ,  : 2 V - - - ~  ( V  1 + b - -  I) .  

It should be noted that for b < 0 the sound beam is defocused. 

NOTATION 

v, Velocity; p~ true density; Pi, pressure; ~i, spatial concentration; i, phase number; 
R, bubble radius; ~,, viscosity of the liquid; y, polytropic index; ~,.frequency; c, velocity 
of sound; k, wave number; 9, eikonal; A, amplitude; n, index of refraction; 8, dispersion para- 
meter; 6, absorption coefficient; Z, wavelength; x, z, ~, ~, coordinates; a, beam width; d, b, 
parameters of heterogeneity. Indices: i, liquid phase; 2, gas phase. 
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INFLUENCE OF PHYSICAL AND SCHEMATIC VISCOSITY IN 

THE ANALYSIS OF THE NEAR WAKE BEHIND A DISC 

I. A. Belov, S. A. Isaev, 
M. I. Nisht, and A. G. Sudakov 

UDC 532.517.4 

The influence of the physical and schematic viscosity on the results of compu- 
tations performed within the framework of viscous and ideal medium models is 
analyzed in an example of uniform incompressible fluid flow around a disc. 

i. The development of the near wake behind a disc is a typical example of the flow a- 
round bodies with a fixed site of flow separation on their surface. Investigation of the in- 
fluence of viscosity in computing such flows is of important value in the determination of 
integral and local characteristics of poorly streamlined bodies, particularly the base pres- 
sure. Interest is also stimulated in the computation of separation flows by the practical 
utilization of flow control principles because of the premeditated formation of developed 
circulation zones near the streamlined bodies (see [i], for example). Separation flows can 
be modelled correctly on the basis of the solution of the system of complete nonstationary 
Navier--Stokes equations. The complexity of realizing such an approach even in investigations 
of stationary separation flows for significant Reynolds numbers is well known. The initial 
system of time-averaged Navier--Stokes equations in Reynolds form is not closed in this case 
and requires reliance on semiempirical models of turbulence which describe such flow struc- 
tural elements of different scale as thin shear layers and vortex formations, whose dimensions 
are commensurate with the size of the body being streamlined. 

In a number of cases, particularly in the solution of problems about the flow around a 
body with sharp edges at ultimately high Reynolds numbers when the influence of molecular 
viscosity on the flow becomes insignificant, the difficulties in solving the complete Navier-- 
Stokesor the Reynolds equations resulted in the development of methods to compute separation 
flows that are based on a model of an ideal medium [2]. Let us mention just two, the method 
of discrete vortices and the method of coarse particles, whose detailed description is given 
in [3] and [4], respectively. The satisfactory agreement between the computed results ob- 
tained by using these methods and the experimental data (on body drag, flow Configuration, 
etc.) affords a basis for the assumption that such an approach is justified in the considera- 
tion of fully developed turbulent flows. Let us note that modelling the turbulence is here 
presumably associated with singularities in the numerical realization of the analysis that 
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